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Abstract. We consider the class of Markovian processes defined by the equation dx/dt =
−βx +

∑
k zkδ(t − tk). Such processes are encountered in systems (such as coalescing systems)

where dynamics creates discrete upward jumps at random instants tk and of random height zk . We
observe that the probability for these processes to remain above their mean value during an interval
of time T decays as e−θT , defining θ as the persistence exponent. We show that θ takes the value
β, which thereby extends the well known result of the Gaussian noise case to a much larger class
of non-Gaussian processes.

1. Introduction

Let us consider a stationary random process x(t) and suppose that at t = 0 this process is
above a given threshold X. What is the probability Q(T ) that the process has never crossed
the threshold X up to time t = T ? In many examples of statistical mechanics we observe

Q(T ) ∼ e−θXT T → ∞ (1)

where θX is a function of the threshold. The question of determining θX is called the ‘persistence
problem’ and has recently been the primary focus of many papers in the study of out-of-
equilibrium systems. For a short review the reader can see [1] and references therein. In many
persistence problems, only the case where X = 〈x〉 is considered and usually one writes θ

for θ〈x〉.
It often happens that stationary processes can be obtained from physical nonstationary

systems by rescaling the space variable and taking the new time variable t = log τ [1], where
τ is the physical time. In terms of the latter the persistence probability decays as a power law,
thus defining θX as a new independent exponent [2] called the persistence exponent.

In this paper we present a class of stationary Markov processes x(t) that share a universal
persistence exponent when X = 〈x〉. This class of processes is defined by the linear equation
of motion

dx

dt
= −βx + η(t) (2)

where η(t) is a noise term consisting of upward jumps uniformly distributed along the time
axis with density ρ,

η(t) =
∞∑

k=−∞
zkδ(t − tk). (3)
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The jump heights zk are independent identically distributed random variables of law R(z) such
that 〈z〉 exists. In other words the jump times simply define a Poisson process [6] and η(t) is
a succession of steps of random height and at random moments.

If the jump heights are all equal to a, the limit a → 0, ρ → ∞ with ρa2 fixed transforms
the shifted noise η(t) − ρa into Gaussian white noise. In this case equation (2) is the usual
Langevin equation, which is therefore included as a limit in our class of processes.

The interest of this paper is to solve the persistence problem for the process defined by
equation (2). Simulations have shown that for large T Q(T ) decays exponentially with an
inverse decay rate θX depending on the threshold and on the shape of R(z), such as a Dirac
peak, an exponential or a power law. However, if X = 〈x〉 = ρ〈z〉/β the result θ = β appears
for any law R(z). This equality was known, until now, only for the Langevin equation, with
Gaussian η(t) [2–4].

2. A simple method for the calculation of θ

In this section we show that θX is the lowest eigenvalue of a differential operator. Then when
the threshold is set to X = 〈x〉, the persistence problem is solved straightforwardly.

2.1. Transformation into an eigenvalue problem

Let P ∗(x, t) be the probability distribution of x at time t . It is the solution of the master
equation

∂tP (x, t) = β∂x(xP (x, t)) + ρ

∫ ∞

0
P(x − z, t)R(z) dz − ρP (x, t). (4)

For the persistence problem only the subclass of functions x(t) that are greater than X during
the time interval T is relevant. Let P ∗

+ (x, t) dx be the probability that x(t ′) has not crossed
the level X for t ′ ∈ [0, t] (given that x(0) > X) and that x(t) is in the interval [x, x + dx].
P ∗

+ (x, t) is then solution of the same master equation but with the absorbing boundary condition
P ∗

+ (x, t) = 0 when x < X. Because of this condition, P ∗
+ (x, t) will decay to zero as t → ∞.

We will write it as a superposition of decay modesPλ
+ (x)e

−λXt , wherePλ
+ (x) is an eigenfunction

satisfying the eigenvalue equation corresponding to equation (4)

−λXP
λ
+ (x) = β

d

dx
(xP λ

+ (x)) + ρ

∫ ∞

0
Pλ

+ (x − z)R(z) dz − ρP λ
+ (x) (5)

with the condition Pλ
+ (x) = 0 when x < X. Let λ∗

X be the eigenvalue of the slowest decaying
mode. Then we have

Q(T ) ∼ e−λ∗
XT

∫ ∞

X

P λ∗
+ (x) dx as T → ∞ (6)

so that

θX = λ∗
X (7)

if
∫∞
X

P λ∗
+ (x) dx exists.

Finally let us call P θ
+ (x) ≡ Pλ∗

+ (x) the persistence mode. It is necessary to have

P θ
+ (x) � 0 for x � X and

∫ ∞

X

P θ
+ (x) dx < ∞ (8)

in order to define P θ
+ (x, t) as a probability distribution. Moreover the definition of the

persistence problem ensures that x(0) is chosen within the stationary distribution of the process.
This distribution is such that 〈x〉 exists. Therefore we will only focus on solutions P θ

+ (x) with∫ ∞

X

xP θ
+ (x) dx < ∞. (9)
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As a result solving the persistence problem is now equivalent to calculating the lowest
eigenvalue λ∗

X of equation (5) that satisfies (8) and (9).

2.2. Calculation of θ

We will now show that λ∗
〈x〉 = β irrespective of the jump size distribution. To this end we

define

f
(n)
λX =

∫ ∞

X

xnP λ
+ (x) dx n = 0, 1, . . . (10)

and we integrate equation (5) on x from X to ∞. As P θ
+ (x) = 0 when x < X, we obtain the

first relation

λXf
(0)
λX = βXPλ

+ (X). (11)

We now multiply equation (5) by x and integrate as before. After one integration by parts we
obtain

λXf
(1)
λX = βX2Pλ

+ (X) + (β + ρ)f
(1)
λX − ρ

∫ ∞

X

dx
∫ ∞

0
dz xP λ

+ (x − z)R(z). (12)

Using the absorbing boundary condition, we can write∫ ∞

X

dx
∫ ∞

0
dz xP λ

+ (x − z)R(z) =
∫ ∞

X

dy P λ
+ (y)

∫ ∞

0
dz (y + z)R(z) (13)

and the RHS of this equation simply reduces to f
(1)
λX + 〈z〉f (0)

λX . Then equations (12) and (13)
give the second relation

λXf
(1)
λX = βX2Pλ

+ (X) + βf
(1)
λX − ρ〈z〉f (0)

λX . (14)

We then eliminate Pλ
+ (X) from equations (11) and (14) and obtain finally using ρ〈z〉 = β〈x〉

(f
(1)
λX − Xf

(0)
λX )λX = β(f

(1)
λX − 〈x〉f (0)

λX ) (15)

which is valid for any λX for which f
(1)
λX < ∞. One can remark that equations (11) and (14),

and therefore equation (15), could not be obtained if the jump heights were not all positive.
So this property is essential in this paper.

Let us now take X equal to the average of the process: X = 〈x〉. Equation (15) shows
that we must have

λ〈x〉 = β or f
(1)
λ〈x〉/f

(0)
λ〈x〉 = 〈x〉. (16)

If in equation (16) we set λ〈x〉 = λ∗
〈x〉 = θ , we see from equations (8) and (10) that f (1)

θ〈x〉/f
(0)
θ〈x〉

is the average of the process x in the persistence mode, i.e. given that it remains always above
X = 〈x〉. This quantity is therefore larger than 〈x〉 and the second one of equation (16) cannot
be satisfied. Finally the only possibility is λ∗

〈x〉 = β which proves the main result of this note.
For λ〈x〉 �= λ∗

〈x〉 equation (16) shows that∫ ∞

〈x〉
dx (x − 〈x〉)P λ

+ (x) = 0 λ〈x〉 > λ∗
〈x〉. (17)

It follows that for λ〈x〉 �= λ∗
〈x〉 any eigenfunction Pλ

+ (x) with f
(1)
λX < ∞ must have at least one

zero for 〈x〉 < x < ∞. One can also see equation (17) as an orthogonality relation between
two eigenvectors of equation (5) that are x − 〈x〉 (with the eigenvalue −2β) and Pλ

+ (x).
One final remark is necessary. We have studied the persistence problem in the most natural

situation, that is when the condition f
(1)
λ〈x〉 < ∞ is fulfilled. However, one could be interested in

other cases where the initial distributionsP(x, 0) have a large tail for x → ∞ that do not ensure
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this condition. If one starts with such a distribution, one can expect the persistence problem to
be governed by the shape of this initial distribution, with different answers depending on the
choice of the latter. Therefore large initial distributions where f

(1)
λX = ∞ are simply cases of

no interest in our study.

2.3. Perturbation for X close to 〈x〉
Very few cases in statistical physics offer the possibility of calculating the quantity

〈x〉X = f
(1)
θX /f

(0)
θX (18)

which is the average of the process in the persistence mode. However as f (n)
θ〈x〉 = f

(n)
β〈x〉 one can

assume that

f
(n)
θX = f

(n)
β〈x〉 + f̃

(n)
θX (19)

where f̃
(n)
θX → 0 if |X − 〈x〉| → 0. Rewriting equation (15) for λX = λ∗

X one obtains

θX = β
f

(1)
θX − 〈x〉f (0)

θX

f
(1)
θX − Xf

(0)
θX

(20)

which can also be written

θX = β
1

1 − X−〈x〉
〈x〉X−〈x〉

. (21)

Finally one can suppose that X is close to 〈x〉 and perturbs equation (21) to find

θX = β

(
1 +

X − 〈x〉
〈x〉〈x〉 − 〈x〉 + · · ·

)
|X − 〈x〉| → 0. (22)

Unfortunately we cannot go further here. We do not know how to calculate 〈x〉〈x〉 except in
the Gaussian limit, which will be the focus of the next section.

3. The special case of Gaussian noise

Our goal here is to illustrate the method of section 2 in the special known case of Gaussian
process. If one considers constant jumps with R(z) = δ(z − a) and sets ρa2 = �, one can
take the limit a → 0 with � fixed in equation (4) and find

∂tP (x, t) = β∂x((x − 〈x〉)P (x, t)) +
�

2
∂xxP (x, t) + O(a). (23)

In this limit equation (23) leads to the Fokker–Planck equation for the zero-average process
x(t)− 〈x〉, which hence becomes the stationary Gaussian–Markovian process, also called the
Ornstein–Uhlenbeck process. This shows that the Gaussian case, which is of high interest in
statistical physics, is included as a special limit in the class of processes studied in this paper.

3.1. Calculation of θ

For simplicity we will now write x instead of x − 〈x〉 and X instead of X − 〈x〉. We thus
consider the zero-average Gaussian process x(t) and we want to determine the persistence
exponent θX related to the probability of having never crossed the level X up to time T . As in
section 2 it is equivalent to finding the lowest eigenvalue λ∗

X of

−λXP
λ
+ (x) = β

d

dx
(xP λ

+ (x)) +
�

2

d2

dx2
Pλ

+ (x) P λ
+ (X) = 0. (24)
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The solution of this equation is

Pλ
+ (x) = e−y2/4(A1Dλ/β(y) + A2Dλ/β(−y)) (25)

where y = √
2β/�x is dimensionless and Dν is the parabolic cylinder function of index ν [5].

The integration constants A1,2 are such that

A1Dλ/β(Y ) + A2Dλ/β(−Y ) = 0 (26)

with Y = √
2β/�X. After one performs the same integrations as in section 2, equation (24)

gives the two relations

λXf
(0)
λX = �

2

dPλ
+

dx

∣∣∣∣
X

(27)

λXf
(1)
λX = βf

(1)
λX +

�

2
X

dPλ
+

dx

∣∣∣∣
X

. (28)

Eliminating dPλ
+

dx |X from equations (27) and (28) one finally obtains

(f
(1)
λX − Xf

(0)
λX )λX = βf

(1)
λX (29)

which is strictly equivalent to equation (15). In the same way as in section 2 it now follows
that if X = 0 then θ = λ∗

0 = β, which is the known result of Gaussian persistence [2–4].
Another remark can be made here. The solution of equation (24) that vanishes at the

origin is proportional to (with A1 = −A2 = A)

P̃ (y) = Ae−y2/4(Dλ/β(y) − Dλ/β(−y)) (30)

which can be reduced to

P̃ (y) = A′ye−y2/2
1F1((1 − λ/β)/2, 3/2, y2/2) (31)

where A′ is simply a numerical constant [5]. Using the result [7]∫ ∞

0
e−uu1/2

1F1((1 − ν)/2, 3/2, u) du = 0 ν > 1 (32)

one has immediately f
(1)
λ0 = 0 for any λ > β, which is a direct proof of equation (17) in the

Gaussian case.

3.2. Perturbation for small X

Our method offers a faster way than the one presented in [3], in the Gaussian case, to calculate
θX when X is close to 〈x〉 (which is zero here).

As P
β
+ (x) = A′ye−y2/2 [3], one finds 〈x〉〈x〉 = √

π�/4β and equation (22) immediately
gives

θX = β

(
1 + 2

√
β

π�
X + · · ·

)
X → 0 (33)

which is the well known perturbative result for the Gaussian persistence exponent [3].

4. Application

We give here some examples of Markovian but non-Gaussian processes defined by equation (2).
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4.1. 1D Percolation

Let us consider an infinite 1D lattice. Each site can be occupied or empty. At an initial time,
say t = 0, we start with a totally empty lattice. Then, at each time step, one site is chosen
randomly among non-occupied ones and is then set occupied forever. The density of occupied
sites p is therefore an increasing function of time. It goes from zero to unity as time goes from
zero to infinity (in the limit of an infinite lattice, which is the case we consider here). We define
clusters in a standard way, that is as sets of adjacent occupied sites. It is then possible to study
percolation on this lattice as a dynamical process. De Freitas and dos Santos Lucena [10] have
already performed this study numerically.

The interest here is to consider a semi-infinite lattice and the cluster that contains its origin.
When p goes from zero to unity, the size s(p) of this cluster will grow from zero to infinity.
It is very easy to see that

〈s〉 = p

1 − p
and

√
's2 =

√
p

1 − p
. (34)

The evolution equation for s(p) is also quite simple. This random process is constant
except when new sites are connected to the cluster, which creates upward jumps of height j .
Hence

ds

dp
=

∞∑
k=0

jkδ(p − pk) (35)

where k is the jump index. If R̃(j)'p is the probability of having a jump j when the density
of occupied sites goes from p to p + 'p then

R̃(j)'p = pj−1(1 − p)
'p

1 − p
. (36)

The quantity'p/(1−p) is simply the probability of making a jump during'p. The normalized
distribution law for the jumps is then

R̃(j) = pj−1(1 − p) (37)

and the density of jumps is ρ(p) = 1/(1 − p). As p tends to 1, the typical timescale of the
dynamics of the process s(p), which is ∼1/ρ, goes to zero. The aim is now to deal with a
stationary process. If the new timescale is

t = log
1

1 − p
(38)

the jump times tk are now uniformly distributed with unit density along the t-axis. Then we
rescale the process s(p), setting

x(t) = s(p)√
's2

and zk = jk√
's2

(39)

and we take the limit p → 1 or equivalently t → ∞. The jumps z have now the probability
density R(z) so R̃(j)'j = R(z)'z. In the limit p → 1

R(z) = e−z. (40)

If we write equation (35) in terms of x, t and z, the evolution equation is finally

dx

dt
= −x(t) +

∞∑
k=0

zkδ(t − tk) (41)

in the limit t → ∞. This gives a second example of noise of equation (3) with an exponential
distribution law for the jump height. The value of the persistence exponent is then θ = 1.
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4.2. Other examples

A second example of noise defined by equation (3) is given by the study of random walks.
The time t (S) needed for the walker to visit S distinct sites on a 1D lattice is a random process
which, under the same kind of scaling as in the last subsection, satisfies equation (2) [8]. The
jump height distribution R(z) is then a power law with a cutoff. In this case the value of θ
is 2. We will not go further about this result in this paper and the reader can see [8] and [9] for
more details.

Finally the process x(t) defined by equation (2) is simply the electric signal that one
would observe in an RC circuit receiving random charges due to, for instance, the presence
of radioactive elements. The persistence exponent is then θ = 1/RC, that is the inverse
relaxation time of the circuit.

5. Conclusion and discussion

With a very simple calculation we are able to find the persistence exponent of a large class of
stationary Markov processes which includes the Gaussian case. As this quantity is universal
within this entire class, it demonstrates the existence of universality classes related to non-
Gaussian persistence exponents.

To go further one should study the properties of the master equation (4) because the
level-dependent exponent θX is entirely determined by the knowledge of 〈x〉X. However, the
nontrivial asymptotic behaviour θX ∼ X logX + X1/3(logX)2/3 + · · · , X → ∞, found in [9]
when the jumps are constant shows that this investigation is likely to be very difficult.
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